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CLASSIFICATION OF SPACES SUPPORTING GRAVITATIONAL FIELDS!

A. Z. Petrov?

This article gives an expanded proof of results derived by the author earlier and first published in
1951 (Ref. 1). We will treat a V, supporting a gravitational field (that is, we have in four dimensions
9 .
ds* = 8ij dx* dxd (1)
and, further, the field equations

Ri}' = Kg‘.’. (2

—we will call such a manifold a T,), and we will establish for it a classification scheme by investigating

the algebraic structure of the curvature tensor.

1Scientz‘fic Transactions of the Kazan State University, (Named for V. I. Ul'yanov-Lenin), Jubilee (1804-1954)
Collection, Vol. 114, Book 8, 1954, pp. 55-69.

2Kazan State University, Department of Geometry.
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. BIVECTOR SPACE

We consider some point P in our manifold T and compare it with a local centro-affine E ;. In this £,
we single out all the tensors that satisfy the conditions: (1) the number of covariant indices is the same as
the number of contravariant indices, and (2) the co- and contravariant indices may be grouped in separate
antisymmetrical pairs. We will consider every such pair as one collective index, which we will denote with
a Greek letter. In this way, we derive a manifold of N = n(n — 1)/2 dimensions (six dimensions for n = 4).

The tensors of E4 possessing the indicated properties define, in this space, tensors of half their order.

To each point of the T,, in this way, there corresponds a local six-dimensional centro-affine geometry

with a transformation group

7711 =AZ 770.
770.= AZ’ na
(3)
43 [ 40
a \
] \
a 48 _ sa |
A,B A,y =8

In fact, if we order the collective index (choosing one from the two possible pairs ij and ji), then we have

six possible collective indices. We may establish, for example, the following correspondence:

1-14 2-24 3-34
4-23 5-31 6 - 12

We consider now the transformation of the components T%/ of a general bivector:

e

PN .1 .
Lj= AR T
i o= Al.]. T

Setting

AZ' = 2A‘.E.‘Jiq where A::' =
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we readily derive in terms of the collective indices the relationship
a,' a’ o
= =A4;T

that is, the set of the bivectors of Tn (the dimension here is not significant) determines in Ey aset of
contravariant vectors satisfying the conditions of Eq. (3). These relationships may be verified immediately

by a change to Latin indices.

We will call the derived manifold a bivector manifold. In what follows, the curvature tensor of T4

will be of special interest; in bivector space, it will correspond to a symmetrical tensor of rank two:

R - R

ijkl R

af T “Ba

in each local E6’ one may introduce a metric, using for this purpose some tensor of T4 possessing the

properties

M M.

ikl = Mklij = Wikl T —Mijlk
and with the condition that the rank two tensor in E corresponding to it is nonsingular. As such a funda-

mental tensor of E6 we take the tensor

Bikji = Bij Bkl ~ 8il 6k @ Bap = EBa (4)

k> a ]l > ,3
It is easy to see that £a gives a nondegenerate metric, since Igiil # 0, and
- 2n % 0
|8as| = P |8 P

For a determinate 8ij> 8ap also will be determinate; for an indeterminate 8ij» the tensor 8ap also will, in
general, be indeterminate. We note that we will consider only those gravitational fields that correspond to a
real distribution of matter in space; for this it is necessary (Ref. 2) that, at every given point of T}, the
fundamental tensor 8} in a real system of coordinates be reducible to the form

-1

(g;;) = -t (5)
1
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that is, we arrive, in such a way, at Minkowski space. Then from Eq. (4), it follows that, for the frame of

reference corresponding to the matrix (5), the fundamental tensor of R will have the form

[€as] = ~1 ©)

that is, Bap is an indeterminate tensor.
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ll.  CLASSIFICATION OF T,

A series of most interesting problems arising in the study of Riemannian manifolds is connected
with the curvature tensor of | With the help of this tensor, as is known, the curvature may be evaluated in

a given two-dimensional direction at a given point:

R.., Vi ykl
ijkl
K- — (7
yPq yrs

gqus
where Epgrs takes the form of Eq. (4), and where the two-space direction determined by Ve, V¢ is character-
1 2
ized by the simple bivector V¥ 1 & Vi. We now introduce the general curvature of ¥, by relaxing in Eq. (7)
1 2
the requirement of simplicity of the bivector /. The general invariant K at some point in V. will be a

homogeneous function of the components of the bivector V¥ (not simple, in general, and of zero rank);

evidently, it may be written in the form

ayB
R VeV

K- — (8)
g VEVP

B
We consider now the problem of determining the critical values of K, which is equivalent to finding
the vectors ¥%in Ry for which K assumes the critical values. Let us agree to call these critical values of
K stationary curvatures of V_and to call the corresponding bivectors V% the stationary directions of V. In
this way, the problem is reduced to the determination of unconditional-stationary vectors of V% in bivector

space, based on the necessary and sufficient conditions of stationariness:

dK

=0 9
ave

It is necessary to bear in mind that, with an indeterminate 8ij tensor, g4 is also indeterminate; consequently,

the appearance of null stationary directions is possible:

g5 V2VP =0 (10)

For the time being, we exclude this particular case, but will return to it below.
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If Eq. (10) does not take place, then Eq. (9) reduces to
(R, ~Kgog VP = 0 11)

that is, the stationary directions of Vn will be the principal directions of the tensor Ra[3 in bivector space,

and the stationary curvatures of ¥ will be the characteristic quantities of the secular equation
|Rop ~Kgag| =0 (12)

Let Eq. (10) hold for a stationary V% Since we are interested in K only, satisfying Eq. (9), Kis a
continuous function of V% consequently, it is necessary that the condition RaﬁV"'V'B = 0 be fulfilled. Then

the value of K for the stationary null direction of ¥*may be calculated in the following way:

K(V% = lim KWF*+dV?
dav®>0

If we designate, for arbitrary V¢
b = g VOVP Y = Rz VoVP (13)

then, for a stationary null V<

. YVE+dV?) - (V)
lim
dVves0 (Ve +dV*) - (V%)

KV

) YdVT 4+ e
o aVO'
= lim
p3 PdV + ...
o aVO’
6
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and, since this limit may not depend on the method of variation of dV ¢,

E)
B
a1 R,V
KW®) = .
9 8apV?
AV

that is, we again arrive at Eq. (11).

The determination of stationary curves and directions of Ry leads to the study of the pair of
quadratic forms given in Eq. (13). Consequently, canonical expression of this pair of forms in real space
permits classification of the curvature tensor of V not only at the given point, but also in the region of ¥V,

cs this point, in which the characteristic K-matrix

[|Rap = K&ag | (14)
is invariant. To every type of characteristic matrix (14), there corresponds a special kind of gravitational
field that determines the desired classification of Tj.

By using a real transformation, the matrix ||8ap || may be converted to the form of Eq. (6); by using

real orthogonal transformations, the matrix HRG,B || may be simplified.

Theorem 1. The matrix HRa,B || in an orthogonal frame of reference (Eq. 5) may be symmetrically

factored.

In a frame of reference (Eq. 5), the equation of the field assumes the form
%ek Rikjk = K8 €, = t1
that is, with { = j,

% ey Ripip = Ke

and, with i £ j,

er Rigji + €1 Ryyjy =0 G, j b, 1#)
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Describing these relationships in the selected indices of bivector space and taking into account the numer-

ation introduced in Part I, we derive for the matrix the expression

M|N

”Raﬁ Il = (15)
N -
where
My ™12 ™M™y
M - Mg1 M99 TMog
M3y Mgzg My3
11 "i2 P13 I
N = g1 Tog  Toj
"31 M3z 33 I
Mmeg = MBa
(-a’ IB = 17 27 3)
"ep = "ga
and where
3 3
3 m. =K and 2 n..=0
i=1 il 1 ii

because of the Ricci identity. We note that V. F. Kagan arrived at this kind of matrix, however, with the
additional condition of orthogonality, by studying a group of Lorentz transformations (Ref. 3). Y. S. Dubnov
(Ref. 4) and A. M. Lopshitz (Ref. 5) studied this type of matrix with the same assumption of orthogonality.
The fact proved in Theorem 1 holds for any orthogonal frame of re ference, and, consequently, considering
that an orthogonal frame of reference is determined for n = 4 up to six degrees of freedom, one may further

simplify the matrix by a choice of six rotations.

First we prove a theorem that sharply restricts the number (at first glance) of types of characteristic

matrices (14).
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Theorem 2. The characteristic K-matrix (14) always consists of two equal parts.

We reduce matrix (14) to a simpler form by using so-called elementary transformations that, as is
known, change neither the elementary divisors of the matrix nor, consequently, its characteristic. We

represent this matrix as

where Sa.,B is the Kronecker delta.

Adding to each of the three first columns the corresponding column of the second three, multiplied

by i, we derive the equivalent matrix

m.g+ iv”a,BJ" Kaaﬂ | mog

_i(maﬁ + inaﬁ + Ksaﬁ) | ~Mmag = K Baﬁ
Adding to each of the second three rows the corresponding row of the first three, multiplied by i, we obtain

maﬁ+ina,B+K8a,B | mog

0 I “ma,B*Linaﬁ—KSaﬁ

Finally, multiplying the first three columns by i /2 and adding to the corresponding second of three
columns, and then doing the same with the second three rows, we reduce the matrix to
ma.,B+ ina.,B+K8a.,B 0 P(K) 0
0 l Mag = ingg + K 8, 0 PBK

equivalent to the K-matrix (14). The problem is thus reduced to study of two three-dimensional matrices

P(K) and P(K), the corresponding elements of which are complex-conjugate. From here it follows that the

elementary divisors of these two matrices are also complex-conjugate, and, consequently, their characteristics
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have identical forms. In this way, the characteristic of our K-matrix divides into two similar parts — which

1s correct.

We note that the principal directions and invariant groups of the K-matrix also should be complex-

conjugate in pairs.
Now one may introduce the classification of gravitational fields:

THEOREM 3. There exist three and only three types of gravitational field. The three-dimensional
matrix P (K) may have only one of three possible types of characteristic: [111], [21], [3], if one dis-
regards the case in which some of the elementary divisors have identical bases and, consequently, some of

the numbers appearing in the brackets are included in round parentheses (for example: [(11) 1], [(21)], etc.).

The characteristic of P(K) may take the same form. Then the characteristics of the K-matrix will be

written

L [11,11,11]
2 [22,11] (16)
3. [33]

where in each case the dashed numbers designate the power indices for the elementary divisor with a base

that is complex-conjugate to the base of the elementary divisor, the power of which is expressed by the pre-

ceding number.

Each type of gravitational field will be studied separately in Part III; for each type we will derive

the canonical forms of the matrix HRa,B ||

10
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lll.  THE CANONICAL FORMS OF THE MATRIX ||R, ]|

A. Manifold T, with Characteristic [11, 11, 11

We consider the first type of T4 with characteristic [1_1—, 11, 11). Since in this case the
characteristic is of the simple type, the tensor R has six nonnull, mutually orthogonal principal directions

(Ref. 6). These directions of bivector space at the given point T, will give the bivectors a specific structure,

which will be derived.

We denote the component vectors of a real orthogonal frame of reference at a point of T by fi
(k, i =1, 2, 3, 4); the simple bivector ﬁ‘ lfﬂ (k £ 1), distributing the two-space (area) determined by the
frame of reference, will be, for shortness, designated f,:]l In bivector space these simple bivectors determine
six independent, nonuli, mutually orthogonal coordinate vectors & = 8;; any vector of R, in particular the
o

vectors of the principal directions of Ra,B , may be expressed in terms of these vectors.

We will show that, for the vectors of the principal directions [they are determined uniquely only

when the roots of the secular equation (Eq. 12) are all different], one may take the vectors in the form
Wh= NE*+il*)+ Tt &Y+ pfEF L il” Q7
(F7ri7) (i) ()
In most cases, the condition that W determines the principal direction of the tensor Ra,B is written

(Ry g~ Kgog) WP =0 (18)

But this system of six equations, because of the symmetry of the K-matrix, reduces to three

equations:

(ms1 ting + K)X + (m82 + ins2)p. + (m83 tin g)v=0 (s=1,2 3

In order that A, 1, v be nonzero solutions of this system, it is necessary and sufficient that K be a

root of one of the equations

IP(K)] =0 |P(K)| =0 (19)

that is, a root of the secular equation (Eq. 12); this proves the form of Eq. (17).

1
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To the vector ¥ (Eq. 17) of manifold R at a given point of T, there corresponds the bivector

N g g ) (G ) o

It is not difficult to see that, under a real orthogonal transfomation, Wil transforms into a bivector

 x ok . .
of the same type, during which A, ¢, ¥ > X, i, v, so that the norm of the bivector remains invariant:

*2 *2 *2
Maep?e =Ny s

Let the roots of (Eq. 12), K(s = 1, 2, 3), correspond to the vectors of principal direction W% then the
Y s

K , according to the preceding, must correspond to W, with proper numeration. To the root K corresponds
s+3 s

the bivector
1 1\14 23 1\24 31 1\34 12

and to K — the bivector
4

WPE = N[ £P9 ~ ; EPIN 4+ nf P9 —  £PIN 4 v £PY —§ £PY
4 1(1% 1253 lf(z% laél ) 1(3% 12

*
We represent the bivector WP as a sum of two real bivectors VP9 4+ iIl/Pq; then,
1

E 3
WP ~ yPI — ; yP9

4 1 1
Let
N=a+1ibd
1 1
=a+1ib
K 2 2

where a, b are real numbers (s = 1, 2, 3) and, consequently,
s s

12
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VP9 = a £P9 4 g £PY 1+ o £PT — b £P9 — b £PD _ } £PY
1 114 2 24 3 34 123 2 31 312

*

VP9 = b £P9 4+ b £PT 4 b £PY 4 g £P9 4 g £PY 4 o £PY
1 114 2 24 3 34 123 2 31 312

Since W%is a nonnull vector of Rg, one may consider it to be a unit vector
1

agh -1
gap 7 1
From this we come to the conclusion that
3
2 ab=20 (21)
s=1 ss
3
S (b2 -a%)>1 (22)
s=1 s s

Now one may verify the following statements:

*
1. The real bivectors VP? and VP? are one-sided.
1 2

*
2. The real bivectors VP and gpq are O-parallel (from Eq. 21). They may not be 2/2-parallel
1
since that may happen only under the condition that the coefficients of identical £P7 are

i
proportional; in our case, they would have to be zero, since if

then

They may not be 1/2-parallel since then ¥ would be a single-sided complex bivector,
1
but, using the condition of simplicity, we could arrive at a contradiction between Eq. (21)

and (22). Thus there remains only the possibility indicated above.

13
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*
3. The real bivectors g/Pq and f[z/pq are 2/2-perpendicular. For this it is necessary and

sufficient that, with arbitrary i and j, the equality be fulfilled:

*
V. VSI =0
ILS

It is easy to see that this reduces to Eq. (21) and, consequently, is true.

We consider now the simple bivector }/pq_ Its norm, from Eq. (22),is
vevh -5 (32 - a?) > 0
Bap | 1 s s

In the plane of this real bivector, one may select two real, orthogonal, nonnull vectors 1P, vP. Then the norm

ot our bivector may be expressed in the torm
2 ” ”l - UV Vq
p q

and, consequently, these two vectors are either both space-like or both time-like. Their norms may not be
greater than zero since, assuming these two orthogonal real vectors for coordinates, we contradict the law of
inertia of the quadratic form. Consequently, these two vectors both have negative norms. In view of this, by

X%
renormmalizing, one may take them as the vectors £, £* of a new real orthogonal frame of reference.
3

*
In exactly the same way, in the plane of V?9 we detemmine two orthogonal vectors, real and nonnull,
1

but having norms of opposite signs such that

*a*[3
sua {717 <0

%, &
We call these vectors &, £°. In this system of coordinates
1 4

WP9 = £P9 4 £PY
14 23

WP9 = £P9 _; £PY
14 23

* * &
We note that the frame of reference £ is chosen up to a rotation in the plane of {§ §}and up to a Lorentz

* %
rotation in the plane of {§ £ f The bivectors WPY are of interest, of course, only up to a scalar factor.
14

14
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* *
Now, writing the condition of orthogonality of WP? and WP9, we find that the bivector of the second
1 2

principal direction must take the form

* * * * x , X *
qu=#(§pq+i§pq + v EP9 + i £PTY
2 2\24 31 2\34 12

We use the frame of reference indicated above and perform the rotation
* *
£P = cosh ¢§P + sinh ¢§p
* *
&P = sinh ¢ %:P + cosh ¢ &P
4
* *
£P = cos \/Jrgp + sin ¢,§p

* *
EP = —sin Y P 4+ cos Y &P
2 3
After these transformations, W will take the same form, and W becomes
2

~ ~, ~ ~, ~ ~
wPq - #(gpq +i EPIY + V([ £PT + i £PY
2 2\24 31 2\ 34 12

where

V' = sin y cosh ¢ + p cos Y cosh ¢ + ¢ sin Y sinh ¢
2

+ i (cos i sinh ¢ + g cos yy cosh ¢ — p sin Y sinh @)

p+igq-=

w‘g:*| RN

15
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and where ,l;L may be considered different from zero, since otherwise we would have ¢ = iy = 0. One can find

areal ¢ and Y for every g =0. Now the frame of reference is uniquely determined, and in it, taking account of

)

the orthogonality of 117, 127, and W, these bivectors take the form (within a scalar factor)
3
wPaq - §pq + i qu
1 14 23

WP9 - £P9 4 ; £PY
2 2% 31

WP9 - £P9 4 ; £P9
3 33 12

Because of the complex conjugation indicated above,

wPq - gPa
4 1

wPd - wpd

5 2

wPa - WPq

6 3

Now, writing condition (18) for each of these bivectors and taking

we easily find

i

il

b (i=1,23;i4))

&

i

!
™

i

ij )

16
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and, consequently, for the first type of T, we have derived the following canonical matrix:

(R,g) =

f
Ao
!
g
I
o
—Q
o Q
wq

where the real parts of the stationary curvatures are connected by the relationship

— M
“ R
[]
x

and the imaginary parts, because of the Ricci identity

Rigo3 + Riggq + Rygee =0

satisfy

.-.Mw
“ T

It

(=]

B. Manifold T4 with Characteristic [21, 21]

(23)

(24)

(25)

We now discuss a T4 with a characteristic of the second type: [21, 21 ). As was indicated in

Part II, for the principal directions and invariants of a group of K matrices, one may take the principal

directions and invariants of the group of matrices P(K) and }—’—(K). It follows that it is sufficient to study

the matrix P (K) having the characteristic [21].

17
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With such characteristic, the tensor Pa.ﬁ =-mag+ing of three-space has (Ref. 6) one principal

nonnull direction
- B _
(Pap K 8,6) 7P =0 (26)
Orthogonal to ¥ there is a null principal direction W
1 2

(P.s - K aaﬁ)gfﬁ -0 (27)

Besides there exists a null-vector :;V'B, orthogonal to W'B, and nonorthogonal to W’B, which together with these
1 2

vectors forms an invariant square {W, W} of the tensor Pa/j’ which is expressed by the relation
2 3

- A _
(P.s K 5,5)¥ -o¥, (28)

where o 6 an arbitrary scalar dif ferent from zero. This arbitrariness is the result of ¥ and ¥ being null.

Each principal direction and group of Paﬁ will determine corresponding principal directions and

groups of Ra,B . they will all be defined by bivectors of the type in Eq. (17).

Let the root K correspond to a simple elementary divisor (K ~ K) of a field of K-matrices, and let the
1 1
principal direction be determined by the bivector ¥% Since this bivector is nonnull, all the arguments set

1
forth for W* in the preceding case apply to it. Consequently, one may choose a real frame of reference in
1

which

WPY - £P9 4 ; £PY
1 14 23

This frame of reference is determined up to a rotation in the plane {f £ }and a Lorentz rotation in the
23

plane {f f} Since the bivectors WP and WP9 must be orthogonal to lleq, they take the form
14 2 3

qu=,u(§pq+i§pq + vV §Pq+L§Pq
2 2\24 31 2\ 34 12

wpr4
3

P9 4+ ¢ qu).;. v qu + I épq
lgl 2%- 31 3\34 12

18
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The condition of nullness of these bivectors requires

p2+v2=0
2 2
pt+ 2 =0
3 3
that is,

V= e, i

2 174
Vo= €5l U
3 2" 3

where e, and e, are * 1. Finally, considering the fact that they may noi be orthogonal, we find that e, = ¢,
1 2 ’ g y may g 1 2

Consequently, one may assume

WPY = £P9 4 £P9 4 [ £P9 4 i £PY

2 24 31 34 12

WPT = N§ £P9 4 i £P9 — i £P9 4 gpQ)
3 24 31 34 12

where A is an arbitrary scalar multiplier other than zero.

Now it remains for us to describe the conditions analogous to the conditions of Eq. (26), (27), and

(28) for the tensor Ra,B’ again taking é"" = 85. These conditions will have the form

(Rap = Ksag) ¥° = 0
(Rag ~ Keap ) VP = 0

(Rop = Keap) VP = o805 1”

19
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The tensor 8ap is detemined by the matrix (6). Takingin turn a =1, 2, +-+, 6, we easily find that the matrix

(R a.,B) (Eq. 11) will have the form

—a 0 0 -B 0 0
1 1
0 —a+0 0 0 ~B o
2 2
0 0 —-a -0 0 o -8
2 2
Ros= o0 (29)
-8 0 0 a 0 0
1 1
0 -B o 0 a-o 0
2 2
0 o -8 0 0 a+o
2 2

Here o may be chosen arbitrarily but not equal to zero; @ and B as before are related:
s s

a+2a=«
1 2
(30)
L+2B=0
1 2

The frame of reference is determined up to a rotation in the plane {f, '3 } and a Lorentz rotation in the
2 3

ﬂme{%%}.

C. Manifold T, with Characteristic [3, 5]

The third type of T, with characteristic [3, 3] remains to be considered. With such a characteristic
(Ref. 6) for the tensor Paﬁ’ we find one principal nonnull direction WA and, in addition, two bivectors g]ﬁ
1

and g"B possessing the properties
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(Pag - K 2,5) W7 =0
(Pag - K 8.5) g]ﬁ -0 8,4 llvﬂ (31)

(Pog = & 8ap )T = 780577

where o and 7 are arbitrary numbers not equal to zero. The vector ¥* is nonnull, but ¥ is null. In addition,

iVais orthogonal to W* but not orthogonal to W% W®is orthogonal to ¥
2 3 2 3

Since WP? is a nonnull, as in the two previous cases, choosing corresponding frames of reference
2

(with two degrees of freedom), one may write this vector in the form

WPe = £P9 4§ £P9
2 24 31

Then for the bivectors W and W, if the conditions of orthogonality and nullness which were indicated above
1 3

are considered, we obtain the expression

wP4
1

EPT 4§ P9 4 i(gpq + i £P9

T4 23 34 12

WPT = N ) £P9 4 i £P9 - gpq+i§pq)
T4 23 34 12

where A is some value other than zero. Further study is conducted in the same way as for the preceding type
of characteristic: we write the conditions in Eq. (31) for Raﬁ’ bearing in mind the fact that ¥* is a vector of
1
principal direction (in bivector space), and that the vectors W%, W% W* determine invariant groups of the
1 2

3
tensor Ra./i' These conditions are

B .
(Raﬁ—Kga-ﬁ)llv =0

b

7 B_ A
(Ra.ﬁ - Kga.,B) g = Ugaﬁ l]_V (32)

B . B

(Raﬁ—Kgaﬁ) :;V = Tgaﬁlg

where 0 and 7 are numbers other than zero.

2]
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Considering that the bivector WP7 at a given point in T, determines a local metric bivector space

(=4

(the vector WP9 5> W%) and taking coordinates such that

nt o

§pq_) fa.z sa
nt o

it is easy to show that the system of equations (32)
mp, + in11 +
mig + in12 +
mig + in13 +
Mg +injg =
Mgy + ingy =
mog * ingg =
myp ting -
myg +inyg =

mig + inl3 -

[

reduces to the following nine independent equations:

imyg ~nyg = -K
imgg = ngg =0

im33 ~ ngg = iK

imyg +nyq = -K
im23 + ngg ==T

iMmgg + Ngq = tK

where K = o + i B is one of two roots (each repeated thrice) of the secular equation

|Ra/3_

and the values of o, 7 are different from zero, but otherwise arbitrary. This arbitrariness arises because of

the arbitrariness of the value of A\ and is a consequence of the nullness of the vectors ¥%,

example, assume that o and 7 are real numbers.

Kga,3| =0

Solving this system and also taking into consideration the conditions

e

M w

e,m. . =K
e ng. . = 0
22
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it is not difficult to see that 7 = 20, 8=0, a = /3, so that the matrix ”Ra,B H takes the form

K
- — -0 0 .0 0 0
3
K
-0 - — 0 0 0 -0
3
K
0 0 - — 0 -0 0
3
(R, = (33)
K
0 0 0 — o 0
3
K
0 0 -0 o — 0
3
K
0 -0 0 0 0 —
3

where 0 is some real number other than zero; the frame of reference is determined to within a rotation in the

plane {%’é;}and a Lorentz rotation in the plane{gé} .

D. Summary
Summarizing, the following has been derived:
THEOREM 4. There exist three different principal types of gravitational field:

(1) The first type with a characteristic K-matrix of the simple type [111, 11 11; for such
a point of T4 there is determined a real orthogonal frame of reference in which the matrix

[|R takes the form of Eq. (23) with the conditions of Eq. (24), and (25).

afl H
(2) The second type with a characteristic K-matrix of a nonsimple type [21, 211; for it the

frame of reference is determined up to two degrees of freedom, and the matrix ||Ra,./3 ||

takes the form of Eq. (29) with the conditions of Eq. (30).

23



JPL Translation No. 29

(3) The third type also has a nonsimple characteristic K-matrix, of type [3, 3]; again the
canonical frame of reference frame is determined up to two degrees of freedom, and the

matrix ”Ra,B || takes the form of Eq. (33).

The three indicated types allow, of course, a further, more detailed classification. For example,

one may separate the cases of multiple or real roots, as was done by us earlier.

This result, derived by the author in 1950, was first published in 1951(Ref. 1). In that article there
was an error in the formulas. The third theorem, in Part II, was also proved by A. P. Norden in 1952 (in an
unpublished paper), from his research on bi-affine space. The proof used in the present work is a third

variant and is, obviously, the simplest.

In regard to the work presented in Part III, that is, the determination of a canonical form of a matrix
HRaﬁ || in an orthogonal rectilinear frame of reference, it is necessary to make the following remark. It
might have seemed possible at once to write the canonical form of the matrix ||Ra,6 - Kgaﬁ || by means of
a generalization of the algebraic theory (Ref. 6). However, this is impossible to do since as coefficients of

permissible linear real transformations in our present six-space, we may choose only an array of the form
] [ IR}
A% =247
a 1]

where

1 dx*

i
dx p

are the coefficients of some real orthogonal transformation at a given point P in a manifold 7,. Thatis, we

may use only transformations that are a subgroup of the group of orthogenal real transformations of six-

space.

This fact, which necessitated the arguments of Part II, is evident in the present case and is an

application of a general theorem by G. B. Gurevich (Ref. 7).
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